Glucose restriction combined with chemotherapy decreases telomere length and cancer antigen-125 secretion in ovarian carcinoma

Although chemotherapy is the standard treatment for ovarian cancer (OC), recent studies have focused on its coupling with hypoglycemic drugs to decrease glucose availability. Similarly to cancer antigen 125 (Ca-125), telomerase, the key protein for telomere lengthening, is overexpressed in 90% of OC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology letters 2020-02, Vol.19 (2), p.1338-1350
Hauptverfasser: Antoun, Stephanie, Atallah, David, Tahtouh, Roula, Assaf, Mona Diab, Moubarak, Malak, Ayoub, Eliane Nasser, Chahine, Georges, Hilal, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although chemotherapy is the standard treatment for ovarian cancer (OC), recent studies have focused on its coupling with hypoglycemic drugs to decrease glucose availability. Similarly to cancer antigen 125 (Ca-125), telomerase, the key protein for telomere lengthening, is overexpressed in 90% of OC cases. The aim of the present study was to investigate the effect of the combination of glucose restriction and chemotherapy on telomere length and Ca-125 secretion in OC cells. SKOV-3, OVCAR-3 and Igrov-1 cells were treated with 20 µM cisplatin and 100 nM paclitaxel for 48 h in three different glucose concentrations: i) 4.5 g/l, ii) 1 g/l and iii) 0.5 g/l. The same treatment was repeated once per week for 6 consecutive weeks. The surviving cells were considered platinum-taxane escape (PTES) cells. The expression levels of telomerase and Ca-125 in treated and PTES cells were quantified by qPCR, and Ca-125 secretion by ELISA. Telomere length was evaluated by qPCR according to the Cawthon method. The modulation of Ca-125 by telomerase was assessed using inhibitors, small interfering RNA and transfection with human telomerase reverse transcriptase (hTERT) vectors. The implication of phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/Akt/mTOR) in Ca-125 modulation was investigated using specific inhibitors. An increase in hTERT and Ca-125 expression levels (range, 1.5-3 fold) was observed in short-term treated cells. However, an opposite effect was detected in PTES cells, where the rate of decrease in the expression levels of hTERT and Ca-125 reached 60% after treatment in 0.5 g/l glucose. Moreover, telomere length was decreased by 30% in cells treated with 0.5 g/l glucose. Inhibition of hTERT expression significantly decreased Ca-125 secretion, suggesting a potential modulation of Ca-125 by hTERT. The inhibition of the PI3K/Akt/mTOR pathway also decreased Ca-125 secretion; however, the effect of this treatment was not enhanced when coupled with telomerase inhibitors. In conclusion, the combination of chemotherapy and glucose restriction was observed to decrease Ca-125 secretion and telomerase expression leading to shortening in telomere length. Thus, decreasing glucose availability for OC cells during treatment may lead to a better clinical outcome and potentially improve the prognosis of patients with OC.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2019.11233