Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency

Versatile and precise genome modifications are needed to create a wider range of adoptive cellular therapies 1 – 5 . Here we report two improvements that increase the efficiency of CRISPR–Cas9-based genome editing in clinically relevant primary cell types. Truncated Cas9 target sequences (tCTSs) add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2020-01, Vol.38 (1), p.44-49
Hauptverfasser: Nguyen, David N., Roth, Theodore L., Li, P. Jonathan, Chen, Peixin Amy, Apathy, Ryan, Mamedov, Murad R., Vo, Linda T., Tobin, Victoria R., Goodman, Daniel, Shifrut, Eric, Bluestone, Jeffrey A., Puck, Jennifer M., Szoka, Francis C., Marson, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Versatile and precise genome modifications are needed to create a wider range of adoptive cellular therapies 1 – 5 . Here we report two improvements that increase the efficiency of CRISPR–Cas9-based genome editing in clinically relevant primary cell types. Truncated Cas9 target sequences (tCTSs) added at the ends of the homology-directed repair (HDR) template interact with Cas9 ribonucleoproteins (RNPs) to shuttle the template to the nucleus, enhancing HDR efficiency approximately two- to fourfold. Furthermore, stabilizing Cas9 RNPs into nanoparticles with polyglutamic acid further improves editing efficiency by approximately twofold, reduces toxicity, and enables lyophilized storage without loss of activity. Combining the two improvements increases gene targeting efficiency even at reduced HDR template doses, yielding approximately two to six times as many viable edited cells across multiple genomic loci in diverse cell types, such as bulk (CD3 + ) T cells, CD8 + T cells, CD4 + T cells, regulatory T cells (Tregs), γδ T cells, B cells, natural killer cells, and primary and induced pluripotent stem cell-derived 6 hematopoietic stem progenitor cells (HSPCs). Precise genome editing is made more efficient by stabilizing Cas9 and enhancing shuttling to the nucleus.
ISSN:1087-0156
1546-1696
DOI:10.1038/s41587-019-0325-6