United We Fall: All-or-None Forgetting of Complex Episodic Events

Do complex event representations fragment over time, or are they instead forgotten in an all-or-none manner? For example, if we met a friend in a café and they gave us a present, do we forget the constituent elements of this event (location, person, and object) independently, or would the whole even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental psychology. General 2020-02, Vol.149 (2), p.230-248
Hauptverfasser: Joensen, Bárður H, Gaskell, M. Gareth, Horner, Aidan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Do complex event representations fragment over time, or are they instead forgotten in an all-or-none manner? For example, if we met a friend in a café and they gave us a present, do we forget the constituent elements of this event (location, person, and object) independently, or would the whole event be forgotten? Research suggests that item-based memories are forgotten in a fragmented manner. However, we do not know how more complex episodic, event-based memories are forgotten. We assessed both retrieval accuracy and dependency-the statistical association between the retrieval successes of different elements from the same event-for complex events. Across 4 experiments, we show that retrieval dependency is found both immediately after learning and following a 12-hr and 1-week delay. Further, the amount of retrieval dependency after a delay is greater than that predicted by a model of independent forgetting. This dependency was only seen for coherent "closed-loops," where all pairwise associations between locations, people, and objects were encoded. When "open-loops" were learned, where only 2 out of the 3 possible associations were encoded, no dependency was seen immediately after learning or after a delay. Finally, we also provide evidence for higher retention rates for closed-loops than for open-loops. Therefore, closed-loops do not fragment as a function of forgetting and are retained for longer than are open-loops. Our findings suggest that coherent episodic events are not only retrieved, but also forgotten, in an all-or-none manner.
ISSN:0096-3445
1939-2222
DOI:10.1037/xge0000648