Expression of p16 in nodular fasciitis: an implication for self-limited and inflammatory nature of the lesion

Nodular fasciitis (NF) is a self-limited tumorous lesion occurring in the upper as well as lower extremities. NF is composed of a proliferation of "primary culture"-like myofibroblastic cells with nuclear atypia and large nucleoli, thus mimicking sarcoma. NF harbors a promoter-swapping fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of clinical and experimental pathology 2019-01, Vol.12 (3), p.1029-1034
Hauptverfasser: Matsuda, Ikuo, Nakamura, Junko, Ohkouchi, Mizuka, Torii, Yoshitaka, Futani, Hiroyuki, Tsukamoto, Yoshitane, Hirota, Seiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nodular fasciitis (NF) is a self-limited tumorous lesion occurring in the upper as well as lower extremities. NF is composed of a proliferation of "primary culture"-like myofibroblastic cells with nuclear atypia and large nucleoli, thus mimicking sarcoma. NF harbors a promoter-swapping fusion gene containing the entire coding region of gene. Therefore, NF is a tumor with a fusion oncogene but self-limited. In order to explore why NF is self-limited, we examined whether myofibroblastic cells in NF express p16 protein, a gene product of gene and an inhibitor of cyclin-dependent kinase 4 (CDK4) as well as one of the hallmarks of cellular senescence. We immunohistochemically demonstrated strong and diffuse expression of p16 in myofibroblastic cells in 11 out of 15 cases of NF, and strong but partial expression in the remaining 4 of the cases. We also showed that 15 out of 15 cases of NF were immunohistochemically negative or only showed focal and faint immunopositivity for CDK4, murine double minute 2 (MDM2), and TP53 proteins. Furthermore, there were no significant changes in the copy number of and genes, and no significant mutations in and genes in 1 case of NF selected. These data suggest a possible involvement in cell cycle arrest and presumed cellular senescence by p16 in myofibroblastic cells in NF. This may explain the self-limited as well as inflammatory nature of NF as a senescence-associated secretory phenotype.
ISSN:1936-2625