Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules
Reactive oxygen species (ROS) and nitric oxide (NO) are produced in all aerobic life forms under both physiological and adverse conditions. Unregulated ROS/NO generation causes nitro-oxidative damage, which has a detrimental impact on the function of essential macromolecules. ROS/NO production is al...
Gespeichert in:
Veröffentlicht in: | Antioxidants 2019-12, Vol.8 (12), p.641 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reactive oxygen species (ROS) and nitric oxide (NO) are produced in all aerobic life forms under both physiological and adverse conditions. Unregulated ROS/NO generation causes nitro-oxidative damage, which has a detrimental impact on the function of essential macromolecules. ROS/NO production is also involved in signaling processes as secondary messengers in plant cells under physiological conditions. ROS/NO generation takes place in different subcellular compartments including chloroplasts, mitochondria, peroxisomes, vacuoles, and a diverse range of plant membranes. This compartmentalization has been identified as an additional cellular strategy for regulating these molecules. This assessment of subcellular ROS/NO metabolisms includes the following processes: ROS/NO generation in different plant cell sites; ROS interactions with other signaling molecules, such as mitogen-activated protein kinases (MAPKs), phosphatase, calcium (Ca
), and activator proteins; redox-sensitive genes regulated by the iron-responsive element/iron regulatory protein (IRE-IRP) system and iron regulatory transporter 1(IRT1); and ROS/NO crosstalk during signal transduction. All these processes highlight the complex relationship between ROS and NO metabolism which needs to be evaluated from a broad perspective. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox8120641 |