Young Broiler Feeding Kinematic Analysis as A Function of the Feed Type

Past publications describe the various impact of feeding behavior of broilers on productivity and physiology. However, very few publications have considered the impact of biomechanics associated with the feeding process in birds. The present study aims at comparing the kinematic variables of young b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animals (Basel) 2019-12, Vol.9 (12), p.1149
Hauptverfasser: Neves, Diego Pereira, Mehdizadeh, Saman Abdanan, Santana, Mayara Rodrigues, Amadori, Marlon Sávio, Banhazi, Thomas Michael, de Alencar Nääs, Irenilza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Past publications describe the various impact of feeding behavior of broilers on productivity and physiology. However, very few publications have considered the impact of biomechanics associated with the feeding process in birds. The present study aims at comparing the kinematic variables of young broiler chicks (3-4 days old; 19 specimens) while feeding them with three different feed types, such as fine mash (F1), coarse mash (F2), and crumbled feed (F3). The feeding behavior of the birds was recorded using a high-speed camera. Frames sequences of each mandibulation were selected manually and classified according to the temporal order that occurred (first, second, third, or fourth, and further). The head displacement and the maximum beak gape were automatically calculated by image analysis. The results did not indicate strong correlations between birds' weight, beak size (length and width), and the kinematic variables of feeding. The differences between the tested feed were found mostly in the first and second mandibulations, probably explained by the higher incidence of "catch-and-throw" movements in F3 (33%) and F1 (26%) than F2 (20%). The "catch-and-throw" movements in F1 (the smallest feed particle) mostly occurred in the first mandibulation, as in F3 (the largest feed particle) also occurred in the latest mandibulations. It might be suggested that the adoption of "catch-and-throw" in the latest mandibulations increases with larger particles. The kinematic variables in the latest mandibulations (from the third one on) seem to be similar for all feed types, which represent the swallowing phase. It might be inferred that the temporal sequence of the mandibulations should be essential to describe the kinematics of a feeding scene of broiler chickens, and the first and second mandibulations are potentially the key factors for the differences accounted by the diverse feed particle sizes.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani9121149