Dependence of Generation of Hippocampal CA1 Slow Oscillations on Electrical Synapses

Neuronal oscillations in the hippocampus are critical for many brain functions including learning and memory. The underlying mechanism of oscillation generation has been extensively investigated in terms of chemical synapses and ion channels. Recently, electrical synapses have also been indicated to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience bulletin 2020-01, Vol.36 (1), p.39-48
Hauptverfasser: Xu, Yuan, Shen, Feng-Yan, Liu, Yu-Zhang, Wang, Lidan, Wang, Ying-Wei, Wang, Zhiru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuronal oscillations in the hippocampus are critical for many brain functions including learning and memory. The underlying mechanism of oscillation generation has been extensively investigated in terms of chemical synapses and ion channels. Recently, electrical synapses have also been indicated to play important roles, as reported in various brain areas in vivo and in brain slices. However, this issue remains to be further clarified, including in hippocampal networks. Here, using the completely isolated hippocampus, we investigated in vitro the effect of electrical synapses on slow CA1 oscillations (0.5 Hz–1.5 Hz) generated intrinsically by the hippocampus. We found that these oscillations were totally abolished by bath application of a general blocker of gap junctions (carbenoxolone) or a specific blocker of electrical synapses (mefloquine), as determined by whole-cell recordings in both CA1 pyramidal cells and fast-spiking cells. Our findings indicate that electrical synapses are required for the hippocampal generation of slow CA1 oscillations.
ISSN:1673-7067
1995-8218
DOI:10.1007/s12264-019-00419-z