The chick pallium displays divergent expression patterns of chick orthologues of mammalian neocortical deep layer-specific genes

The avian pallium is organised into clusters of neurons and does not have layered structures such as those seen in the mammalian neocortex. The evolutionary relationship between sub-regions of avian pallium and layers of mammalian neocortex remains unclear. One hypothesis, based on the similarities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.20400-13, Article 20400
Hauptverfasser: Fujita, Toshiyuki, Aoki, Naoya, Fujita, Eiko, Matsushima, Toshiya, Homma, Koichi J., Yamaguchi, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The avian pallium is organised into clusters of neurons and does not have layered structures such as those seen in the mammalian neocortex. The evolutionary relationship between sub-regions of avian pallium and layers of mammalian neocortex remains unclear. One hypothesis, based on the similarities in neural connections of the motor output neurons that project to sub-pallial targets, proposed the cell-type homology between brainstem projection neurons in neocortex layers 5 or 6 (L5/6) and those in the avian arcopallium. Recent studies have suggested that gene expression patterns are associated with neural connection patterns, which supports the cell-type homology hypothesis. However, a limited number of genes were used in these studies. Here, we showed that chick orthologues of mammalian L5/6-specific genes, nuclear receptor subfamily 4 group A member 2 and connective tissue growth factor , were strongly expressed in the arcopallium. However, other chick orthologues of L5/6-specific genes were primarily expressed in regions other than the arcopallium. Our results do not fully support the cell-type homology hypothesis. This suggests that the cell types of brainstem projection neurons are not conserved between the avian arcopallium and the mammalian neocortex L5/6. Our findings may help understand the evolution of pallium between birds and mammals.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-56960-4