Self-assembled hydrogel fiber bundles from oppositely charged polyelectrolytes mimic micro-/nanoscale hierarchy of collagen

Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-09, Vol.27 (36), p.1606273-n/a
Hauptverfasser: Sant, Shilpa, Coutinho, Daniela F., Gaharwar, Akhilesh K., Neves, N. M., Reis, R. L., Gomes, Manuela E., Khademhosseini, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge. Here, a simple strategy is proposed to engineer biomimetic fiber bundles that replicate the self-assembly and hierarchy of natural collagen fibers. The electrostatic interaction of methacrylated gellan gum with a countercharged chitosan polymer leads to the complexation of the polyelectrolytes. When directed through a polydimethylsiloxane channel, the polyelectrolytes form a hierarchical fibrous hydrogel demonstrating nanoscale periodic light/dark bands similar to D-periodic bands in native collagen and align parallel fibrils at microscale. Importantly, collagen-mimicking hydrogel fibers exhibit robust mechanical properties (MPa scale) at a single fiber bundle level and enable encapsulation of cells inside the fibers under cell-friendly mild conditions. Presence of carboxyl- (in gellan gum) or amino- (in chitosan) functionalities further enables controlled peptide functionalization such as Arginylglycylaspartic acid (RGD) for biochemical mimicry (cell adhesion sites) of native collagen. This biomimetic-aligned fibrous hydrogel system can potentially be used as a scaffold for tissue engineering as well as a drug/gene delivery vehicle. S.S. and D.F.C. contributed equally to the work. This research was funded by the US Army Engineer Research and Development Center, the Institute for Soldier Nanotechnology, the NIH (HL092836, EB007249), and the National Science Foundation CAREER award (A.K.). This work was in part supported by FCT through funds from the POCTI and/or FEDER programs and from the European Union under the project NoE EXPERTISSUES (NMP3-CT-2004-500283). D.F.C. acknowledges the Foundation for Science and Technology (FCT), Portugal and the MIT-Portugal Program for personal grant SFRH/BD/37156/2007. S.S. acknowledges the postdoctoral fellowship awarded by Le Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT), Quebec, Canada and interdisciplinary training fellowship (NIH NRSA T32) awarded by System-based Consortium for Organ Design and Engineering (SysCODE). The authors would like to thank Dr. Iva Pashkuleva and Dr. Maria Ericsson for scientific discussions and technical assistance with TEM, resp
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201606273