Quantitative magnetization transfer imaging of the human locus coeruleus

The locus coeruleus (LC) is the major origin of norepinephrine in the central nervous system, and is subject to age-related and neurodegenerative changes, especially in disorders such as Parkinson's disease and Alzheimer's disease. Previous studies have shown that neuromelanin (NM)-sensiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2019-10, Vol.200, p.191-198
Hauptverfasser: Trujillo, Paula, Petersen, Kalen J., Cronin, Matthew J., Lin, Ya-Chen, Kang, Hakmook, Donahue, Manus J., Smith, Seth A., Claassen, Daniel O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The locus coeruleus (LC) is the major origin of norepinephrine in the central nervous system, and is subject to age-related and neurodegenerative changes, especially in disorders such as Parkinson's disease and Alzheimer's disease. Previous studies have shown that neuromelanin (NM)-sensitive MRI can be used to visualize the LC, and it is hypothesized that magnetization transfer (MT) effects are the primary source of LC contrast. The aim of this study was to characterize the MT effects in LC imaging by applying high spatial resolution quantitative MT (qMT) imaging to create parametric maps of the macromolecular content of the LC and surrounding tissues. Healthy volunteers (n = 26; sex = 17 F/9M; age = 41.0 ± 19.1 years) underwent brain MRI on a 3.0 T scanner. qMT data were acquired using a 3D MT-prepared spoiled gradient echo sequence. A traditional NM scan consisting of a T1-weighted turbo spin echo sequence with MT preparation was also acquired. The pool-size ratio (PSR) was estimated for each voxel using a single-point qMT approach. The LC was semi-automatically segmented on the MT-weighted images. The MT-weighted images provided higher contrast-ratio between the LC and surrounding pontine tegmentum (PT) (0.215 ± 0.031) than the reference images without MT-preparation (−0.005 ± 0.026) and the traditional NM images (0.138 ± 0.044). The PSR maps showed significant differences between the LC (0.090 ± 0.009) and PT (0.188 ± 0.025). The largest difference between the PSR values in the LC and PT was observed in the central slices, which also correspond to those with the highest contrast-ratio. These results highlight the role of MT in generating NM-related contrast in the LC, and should serve as a foundation for future studies aiming to quantify pathological changes in the LC and surrounding structures in vivo. [Display omitted] •The human locus coeruleus can be visualized using neuromelanin MRI.•The locus coeruleus contrast is enhanced using magnetization transfer.•The locus coeruleus macromolecular content is lower than adjacent tissues.•T1-weighting combined with magnetization transfer produce neuromelanin-related contrast.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2019.06.049