The concerted actions of Tip1/CLIP-170, Klp5/Kinesin-8, and Alp14/XMAP215 regulate microtubule catastrophe at the cell end
Spatial regulation of microtubule catastrophe is important for controlling microtubule length and consequently contributes to the proper establishment of cell polarity and cell growth. The +TIP proteins including Tip1/CLIP-170, Klp5/Kinesin-8, and Alp14/XMAP215 reside at microtubule plus ends to reg...
Gespeichert in:
Veröffentlicht in: | Journal of molecular cell biology 2019-12, Vol.11 (11), p.956-966 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spatial regulation of microtubule catastrophe is important for controlling microtubule length and consequently contributes to the proper establishment of cell polarity and cell growth. The +TIP proteins including Tip1/CLIP-170, Klp5/Kinesin-8, and Alp14/XMAP215 reside at microtubule plus ends to regulate microtubule dynamics. In the fission yeast Schizosaccharomyces pombe, Tip1 and Alp14 serve as microtubule-stabilizing factors, while Klp5 functions oppositely as a catastrophe-promoting factor. Despite that Tip1 has been shown to play a key role in restricting microtubule catastrophe to the cell end, how Tip1 fulfills the role remains to be determined. Employing live-cell microscopy, we showed that the absence of Tip1 impairs the localization of both Klp5 and Alp14 at microtubule plus ends, but the absence of Klp5 prolongs the residence time of Tip1 at microtubule plus ends. We further revealed that Klp5 accumulates behind Tip1 at microtubule plus ends in a Tip1-dependent manner. In addition, artificially tethering Klp5 to microtubule plus ends promotes premature microtubule catastrophe, while tethering Alp14 to microtubule plus ends in the cells lacking Tip1 rescues the phenotype of short microtubules. These findings establish that Tip1 restricts microtubule catastrophe to the cell end likely by spatially restricting the microtubule catastrophe activity of Klp5 and stabilizing Alp14 at microtubule plus ends. Thus, the work demonstrates the orchestration of Tip1, Alp14, and Klp5 in ensuring microtubule catastrophe at the cell end. |
---|---|
ISSN: | 1759-4685 1674-2788 1759-4685 |
DOI: | 10.1093/jmcb/mjz039 |