An Automatic Assessment System for Alzheimer’s Disease Based on Speech Using Feature Sequence Generator and Recurrent Neural Network

Alzheimer disease and other dementias have become the 7th cause of death worldwide. Still lacking a cure, an early detection of the disease in order to provide the best intervention is crucial. To develop an assessment system for the general public, speech analysis is the optimal solution since it r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.19597-10, Article 19597
Hauptverfasser: Chien, Yi-Wei, Hong, Sheng-Yi, Cheah, Wen-Ting, Yao, Li-Hung, Chang, Yu-Ling, Fu, Li-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer disease and other dementias have become the 7th cause of death worldwide. Still lacking a cure, an early detection of the disease in order to provide the best intervention is crucial. To develop an assessment system for the general public, speech analysis is the optimal solution since it reflects the speaker’s cognitive skills abundantly and data collection is relatively inexpensive compared with brain imaging, blood testing, etc . While most of the existing literature extracted statistics-based features and relied on a feature selection process, we have proposed a novel Feature Sequence representation and utilized a data-driven approach, namely, the recurrent neural network to perform classification in this study. The system is also shown to be fully-automated, which implies the system can be deployed widely to all places easily. To validate our study, a series of experiments have been conducted with 120 speech samples, and the score in terms of the area under the receiver operating characteristic curve is as high as 0.838.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-56020-x