Quantum spin-valley Hall effect in AB-stacked bilayer silicene
Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bila...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-12, Vol.9 (1), p.19426-9, Article 19426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 19426 |
container_title | Scientific reports |
container_volume | 9 |
creator | Lee, Kyu Won Lee, Cheol Eui |
description | Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator. |
doi_str_mv | 10.1038/s41598-019-55927-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328722732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-15507ab4ef4a075c3accc80ab4246b71816c7ceb9a38e372c886cb0623c1d5bf3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMorqh_wIMUvHiJ5rNJLgsqfoEggp5Dmp1q1m67Jq2w_97o-rF6MJcJM8-8k8mL0B4lR5RwfZwElUZjQg2W0jCFzRraYkRIzDhj6yv3EdpNaUrykcwIajbRiFMtVSnUFhrfDa7th1mR5qHFr65pYFFc5VBAXYPvi9AWJ6c49c4_w6SoQuMWEIsUmuChhR20Ubsmwe5n3EYPF-f3Z1f45vby-uzkBnuhRI-plES5SkAtHFHSc-e91yRnmCgrRTUtvfJQGcc1cMW81qWvSMm4pxNZ1XwbjZe686GawSSP7qNr7DyGmYsL27lgf1fa8GQfu1dbGsYFIVng8FMgdi8DpN7OQvLQNK6Fbkg2f5RRvCSGZ_TgDzrthtjm9d4prRhTnGWKLSkfu5Qi1N-PocS-O2SXDtnskP1wyJrctL-6xnfLlx8Z4Esg5VL7CPFn9j-ybxkfm3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328722732</pqid></control><display><type>article</type><title>Quantum spin-valley Hall effect in AB-stacked bilayer silicene</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Kyu Won ; Lee, Cheol Eui</creator><creatorcontrib>Lee, Kyu Won ; Lee, Cheol Eui</creatorcontrib><description>Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-55927-9</identifier><identifier>PMID: 31857647</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766 ; 639/925 ; Electromagnetism ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19426-9, Article 19426</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-15507ab4ef4a075c3accc80ab4246b71816c7ceb9a38e372c886cb0623c1d5bf3</citedby><cites>FETCH-LOGICAL-c474t-15507ab4ef4a075c3accc80ab4246b71816c7ceb9a38e372c886cb0623c1d5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923400/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923400/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31857647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kyu Won</creatorcontrib><creatorcontrib>Lee, Cheol Eui</creatorcontrib><title>Quantum spin-valley Hall effect in AB-stacked bilayer silicene</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.</description><subject>639/766</subject><subject>639/925</subject><subject>Electromagnetism</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMorqh_wIMUvHiJ5rNJLgsqfoEggp5Dmp1q1m67Jq2w_97o-rF6MJcJM8-8k8mL0B4lR5RwfZwElUZjQg2W0jCFzRraYkRIzDhj6yv3EdpNaUrykcwIajbRiFMtVSnUFhrfDa7th1mR5qHFr65pYFFc5VBAXYPvi9AWJ6c49c4_w6SoQuMWEIsUmuChhR20Ubsmwe5n3EYPF-f3Z1f45vby-uzkBnuhRI-plES5SkAtHFHSc-e91yRnmCgrRTUtvfJQGcc1cMW81qWvSMm4pxNZ1XwbjZe686GawSSP7qNr7DyGmYsL27lgf1fa8GQfu1dbGsYFIVng8FMgdi8DpN7OQvLQNK6Fbkg2f5RRvCSGZ_TgDzrthtjm9d4prRhTnGWKLSkfu5Qi1N-PocS-O2SXDtnskP1wyJrctL-6xnfLlx8Z4Esg5VL7CPFn9j-ybxkfm3I</recordid><startdate>20191219</startdate><enddate>20191219</enddate><creator>Lee, Kyu Won</creator><creator>Lee, Cheol Eui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191219</creationdate><title>Quantum spin-valley Hall effect in AB-stacked bilayer silicene</title><author>Lee, Kyu Won ; Lee, Cheol Eui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-15507ab4ef4a075c3accc80ab4246b71816c7ceb9a38e372c886cb0623c1d5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766</topic><topic>639/925</topic><topic>Electromagnetism</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyu Won</creatorcontrib><creatorcontrib>Lee, Cheol Eui</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyu Won</au><au>Lee, Cheol Eui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum spin-valley Hall effect in AB-stacked bilayer silicene</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-19</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19426</spage><epage>9</epage><pages>19426-9</pages><artnum>19426</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31857647</pmid><doi>10.1038/s41598-019-55927-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-12, Vol.9 (1), p.19426-9, Article 19426 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923400 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/766 639/925 Electromagnetism Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Quantum spin-valley Hall effect in AB-stacked bilayer silicene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20spin-valley%20Hall%20effect%20in%20AB-stacked%20bilayer%20silicene&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Kyu%20Won&rft.date=2019-12-19&rft.volume=9&rft.issue=1&rft.spage=19426&rft.epage=9&rft.pages=19426-9&rft.artnum=19426&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-55927-9&rft_dat=%3Cproquest_pubme%3E2328722732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328722732&rft_id=info:pmid/31857647&rfr_iscdi=true |