Quantum spin-valley Hall effect in AB-stacked bilayer silicene
Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bila...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-12, Vol.9 (1), p.19426-9, Article 19426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-55927-9 |