Congruent audio-visual stimulation during adaptation modulates the subsequently experienced visual motion aftereffect

Sensory information registered in one modality can influence perception associated with sensory information registered in another modality. The current work focuses on one particularly salient form of such multisensory interaction: audio-visual motion perception. Previous studies have shown that wat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-12, Vol.9 (1), p.19391-11, Article 19391
Hauptverfasser: Park, Minsun, Blake, Randolph, Kim, Yeseul, Kim, Chai-Youn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensory information registered in one modality can influence perception associated with sensory information registered in another modality. The current work focuses on one particularly salient form of such multisensory interaction: audio-visual motion perception. Previous studies have shown that watching visual motion and listening to auditory motion influence each other, but results from those studies are mixed with regard to the nature of the interactions promoting that influence and where within the sequence of information processing those interactions transpire. To address these issues, we investigated whether (i) concurrent audio-visual motion stimulation during an adaptation phase impacts the strength of the visual motion aftereffect (MAE) during a subsequent test phase, and (ii) whether the magnitude of that impact was dependent on the congruence between auditory and visual motion experienced during adaptation. Results show that congruent direction of audio-visual motion during adaptation induced a stronger initial impression and a slower decay of the MAE than did the incongruent direction, which is not attributable to differential patterns of eye movements during adaptation. The audio-visual congruency effects measured here imply that visual motion perception emerges from integration of audio-visual motion information at a sensory neural stage of processing.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-54894-5