Structure and function of the insulin receptor—a personal perspective
Immunoprecipitation with autoantibodies to the insulin receptor derived from patients with extreme insulin resistance and acanthosis nigricans revealed that the receptor is comprised of two subunits of 135 kDa (α subunit) and 95 kDa (β subunit) and that insulin induces the rapid phosphorylation of t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Japan Academy Series B, 2019/12/11, Vol.95(10), pp.581-589 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Immunoprecipitation with autoantibodies to the insulin receptor derived from patients with extreme insulin resistance and acanthosis nigricans revealed that the receptor is comprised of two subunits of 135 kDa (α subunit) and 95 kDa (β subunit) and that insulin induces the rapid phosphorylation of the β subunit in intact cells. Incubation of a highly purified insulin receptor preparation with [γ-32P]ATP also resulted in tyrosine phosphorylation of the β subunit in an insulin-dependent manner, suggesting that the receptor itself is a tyrosine-specific protein kinase. Furthermore, a Japanese boy with insulin resistance and acanthosis nigricans was found to be heterozygous for a mutation of the insulin receptor gene that resulted in the replacement of glycine-996 with valine in the ATP binding site of the receptor. Expression of the mutant receptor in cultured cells revealed it to be deficient in tyrosine kinase activity and mediation of insulin action, suggesting that the tyrosine kinase activity of the insulin receptor is essential for insulin action in vivo. |
---|---|
ISSN: | 0386-2208 0021-4280 1349-2896 |
DOI: | 10.2183/pjab.95.039 |