Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis

Friedreich’s ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2019-05, Vol.177 (6), p.1507-1521.e16
Hauptverfasser: Ast, Tslil, Meisel, Joshua D., Patra, Shachin, Wang, Hong, Grange, Robert M.H., Kim, Sharon H., Calvo, Sarah E., Orefice, Lauren L., Nagashima, Fumiaki, Ichinose, Fumito, Zapol, Warren M., Ruvkun, Gary, Barondeau, David P., Mootha, Vamsi K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Friedreich’s ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications. [Display omitted] •FXN null yeast, human cells, and nematodes are fully viable in ambient 1% O2•Hypoxia restores steady-state levels of Fe-S clusters in FXN null cells•Hypoxia acts by directly activating Fe-S synthesis and increasing bioavailable iron•In a murine model of FXN deficiency, ambient oxygen affects the progression of ataxia Hypoxia promotes survival of in vivo models of Friederich’s ataxia by restoring the necessary signaling pathways for Fe-S metabolism associated with mitochondrial function.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2019.03.045