Full voltage manipulation of the resistance of a magnetic tunnel junction

One of the motivations for multiferroics research is to find an energy-efficient solution to spintronic applications, such as the solely electrical control of magnetic tunnel junctions. Here, we integrate spintronics and multiferroics by depositing MgO-based magnetic tunnel junctions on ferroelectri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2019-12, Vol.5 (12), p.eaay5141-eaay5141
Hauptverfasser: Chen, Aitian, Zhao, Yuelei, Wen, Yan, Pan, Long, Li, Peisen, Zhang, Xi-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the motivations for multiferroics research is to find an energy-efficient solution to spintronic applications, such as the solely electrical control of magnetic tunnel junctions. Here, we integrate spintronics and multiferroics by depositing MgO-based magnetic tunnel junctions on ferroelectric substrate. We fabricate two pairs of electrodes on the ferroelectric substrate to generate localized strain by applying voltage. This voltage-generated localized strain has the ability to modify the magnetic anisotropy of the free layer effectively. By sequentially applying voltages to these two pairs of electrodes, we successively and unidirectionally rotate the magnetization of the free layer in the magnetic tunnel junctions to complete reversible 180° magnetization switching. Thus, we accomplish a giant nonvolatile solely electrical switchable high/low resistance in magnetic tunnel junctions at room temperature without the aid of a magnetic field. Our results are important for exploring voltage control of magnetism and low-power spintronic devices.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aay5141