Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change

Microorganisms are critical in terrestrial carbon cycling because their growth, activity and interactions with the environment largely control the fate of recent plant carbon inputs as well as protected soil organic carbon [1, 2]. Soil carbon stocks reflect a balance between microbial decomposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2020-01, Vol.14 (1), p.1-9
Hauptverfasser: Malik, Ashish A., Martiny, Jennifer B. H., Brodie, Eoin L., Martiny, Adam C., Treseder, Kathleen K., Allison, Steven D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microorganisms are critical in terrestrial carbon cycling because their growth, activity and interactions with the environment largely control the fate of recent plant carbon inputs as well as protected soil organic carbon [1, 2]. Soil carbon stocks reflect a balance between microbial decomposition of organic carbon and stabilisation of microbial assimilated carbon. The balance can shift under altered environmental conditions [3], and new research suggests that knowledge of microbial physiology may be critical for projecting changes in soil carbon and improving the prognosis of climate change feedbacks [4,5,6,7]. Still, predicting the ecosystem implications of microbial processes remains a challenge. In this paper we argue that this challenge can be met by identifying microbial life history strategies based on an organism’s phenotypic characteristics, or traits, and representing these strategies in ecosystem models.
ISSN:1751-7362
1751-7370
DOI:10.1038/s41396-019-0510-0