High-latitude warming initiated the onset of the last deglaciation in the tropics

Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial-interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2019-12, Vol.5 (12), p.eaaw2610-eaaw2610
Hauptverfasser: Jackson, Margaret S, Kelly, Meredith A, Russell, James M, Doughty, Alice M, Howley, Jennifer A, Chipman, Jonathan W, Cavagnaro, David, Nakileza, Bob, Zimmerman, Susan R H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial-interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations to assess the timing of low-latitude temperature changes relative to global climate forcings. We report Be ages of moraines in tropical East Africa and South America and show that glaciers reached their maxima at ~29 to 20 ka, during the global Last Glacial Maximum. Tropical glacial recession was underway by 20 ka, before the rapid CO rise at ~18.2 ka. This "early" tropical warming was influenced by rising high-latitude insolation and coincident ice-sheet recession in both polar regions, which lowered the meridional thermal gradient and reduced tropical heat export to the high latitudes.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aaw2610