Synthetic Phosphodiester‐Linked 4‐Amino‐4‐deoxy‐l‐arabinose Derivatives Demonstrate that ArnT is an Inverting Aminoarabinosyl Transferase

4‐Amino‐4‐deoxy‐l‐arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2019-12, Vol.20 (23), p.2936-2948
Hauptverfasser: Olagnon, Charlotte, Monjaras Feria, Julia, Grünwald‐Gruber, Clemens, Blaukopf, Markus, Valvano, Miguel A., Kosma, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:4‐Amino‐4‐deoxy‐l‐arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester‐linked lipid Ara4N derivatives containing linear aliphatic chains as well as E‐ and Z‐configured monoterpene units. Coupling reactions were based on sugar‐derived H‐phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep‐rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC‐ESI‐QTOF mass spectrometry. Out of seven analogues tested, only the α‐neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2‐lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z‐configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition. Stereochemistry matters: Out of seven synthesized phospholipid‐connected 4‐amino‐4‐deoxy‐l‐arabinose derivatives, only the equatorial neryl derivative was accepted by the Ara4N transferase from B. cenocepacia, leading to incorporation of one and two Ara4N residues into a deep rough mutant lipopolysaccharide from E. coli.
ISSN:1439-4227
1439-7633
1439-7633
DOI:10.1002/cbic.201900349