Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor
We estimate the distribution of random parameters in a distributed parameter model with unbounded input and output for the transdermal transport of ethanol. The underlying model is a diffusion equation with input: blood alcohol concentration and output: transdermal alcohol concentration. We reformul...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2019-08, Vol.106, p.101-109 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We estimate the distribution of random parameters in a distributed parameter model with unbounded input and output for the transdermal transport of ethanol. The underlying model is a diffusion equation with input: blood alcohol concentration and output: transdermal alcohol concentration. We reformulate the dynamical system so that the random parameters are treated as additional space variables. When the distribution to be estimated is absolutely continuous with a joint density, estimating the distribution is equivalent to estimating the diffusivity in a multi-dimensional diffusion equation. Well-established finite dimensional approximation schemes, functional analytic based convergence arguments, optimization techniques, and computational methods may be employed. We use our technique to estimate a bivariate normal distribution based on data for multiple drinking episodes from a single subject. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2019.04.026 |