Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor

We estimate the distribution of random parameters in a distributed parameter model with unbounded input and output for the transdermal transport of ethanol. The underlying model is a diffusion equation with input: blood alcohol concentration and output: transdermal alcohol concentration. We reformul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2019-08, Vol.106, p.101-109
Hauptverfasser: Sirlanci, Melike, Luczak, Susan E., Fairbairn, Catharine E., Kang, Dahyeon, Pan, Ruoxi, Yu, Xin, Rosen, I. Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We estimate the distribution of random parameters in a distributed parameter model with unbounded input and output for the transdermal transport of ethanol. The underlying model is a diffusion equation with input: blood alcohol concentration and output: transdermal alcohol concentration. We reformulate the dynamical system so that the random parameters are treated as additional space variables. When the distribution to be estimated is absolutely continuous with a joint density, estimating the distribution is equivalent to estimating the diffusivity in a multi-dimensional diffusion equation. Well-established finite dimensional approximation schemes, functional analytic based convergence arguments, optimization techniques, and computational methods may be employed. We use our technique to estimate a bivariate normal distribution based on data for multiple drinking episodes from a single subject.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2019.04.026