Crystal structure, Hirshfeld surface analysis and inter-action energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-di-hydro-1H-1,3-benzo-diazol-2-one

In the title mol-ecule, C11H10N2O, the di-hydro-benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C-HMthy⋯π(ring) inter-actions and C-HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di-hydro) hydrogen bon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section E, Crystallographic communications Crystallographic communications, 2019-12, Vol.75 (Pt 12), p.1940-1946
Hauptverfasser: Saber, Asmaa, Srhir, Mohamed, Hökelek, Tuncer, Mague, Joel T, Hamou Ahabchane, Noureddine, Sebbar, Nada Kheira, Essassi, El Mokhtar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the title mol-ecule, C11H10N2O, the di-hydro-benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C-HMthy⋯π(ring) inter-actions and C-HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di-hydro) hydrogen bonds form corrugated layers parallel to (10), which are associated through additional C-HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter-actions between di-hydro-benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter-actions. Hydrogen-bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C-H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C-HProp⋯ODhyr) and 20.2 (for C-HBnz⋯ODhyr) kJ mol-1. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.In the title mol-ecule, C11H10N2O, the di-hydro-benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C-HMthy⋯π(ring) inter-actions and C-HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di-hydro) hydrogen bonds form corrugated layers parallel to (10), which are associated through additional C-HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter-actions between di-hydro-benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter-actions. Hydrogen-bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C-H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C-HProp⋯ODhyr) and 20.2 (for C-HBnz⋯ODhyr) kJ mol-1. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the
ISSN:2056-9890
2056-9890
DOI:10.1107/S2056989019015779