Study on Compatibility and Rheological Properties of High-Viscosity Modified Asphalt Prepared from Low-Grade Asphalt

High-viscosity modified asphalt is mainly used as a binder for porous asphalt in China and Japan. In order to meet the demand for using porous asphalt under high temperature condition in Africa, high-viscosity asphalt made from low-grade matrix asphalt, which is commonly used in Africa is investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-11, Vol.12 (22), p.3776
Hauptverfasser: Li, Mingliang, Zeng, Feng, Xu, Ruigang, Cao, Dongwei, Li, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-viscosity modified asphalt is mainly used as a binder for porous asphalt in China and Japan. In order to meet the demand for using porous asphalt under high temperature condition in Africa, high-viscosity asphalt made from low-grade matrix asphalt, which is commonly used in Africa is investigated. Based on simulation of local climate in Africa, the suitable range of high viscosity additive content for different matrix asphalt was obtained by analyzing dynamic viscosity of the asphalt. Through PG high temperature grading, multi-stress repeated creep, accelerated fatigue, temperature sweep and other tests, changes of high temperature, anti-fatigue and anti-shear indicators before and after modification were compared and analyzed and effects of different matrix asphalt were also studied. Finally, considering engineering requirements, mixing and compaction temperatures of various high-viscosity modified asphalt were determined through study of viscosity-temperature characteristics. This research provides a support for preparation of high-viscosity modified asphalt and porous asphalt mixture by using low grade asphalt. The research achievements can help to guide the material design and application of porous asphalt in Africa and other high temperature areas.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma12223776