Visual and Vestibular Selectivity for Self-Motion in Macaque Posterior Parietal Area 7a

We examined the responses of neurons in posterior parietal area 7a to passive rotational and translational self-motion stimuli, while systematically varying the speed of visually simulated (optic flow cues) or actual (vestibular cues) self-motion. Contrary to a general belief that responses in area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2019-08, Vol.29 (9), p.3932-3947
Hauptverfasser: Avila, Eric, Lakshminarasimhan, Kaushik J, DeAngelis, Gregory C, Angelaki, Dora E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examined the responses of neurons in posterior parietal area 7a to passive rotational and translational self-motion stimuli, while systematically varying the speed of visually simulated (optic flow cues) or actual (vestibular cues) self-motion. Contrary to a general belief that responses in area 7a are predominantly visual, we found evidence for a vestibular dominance in self-motion processing. Only a small fraction of neurons showed multisensory convergence of visual/vestibular and linear/angular self-motion cues. These findings suggest possibly independent neuronal population codes for visual versus vestibular and linear versus angular self-motion. Neural responses scaled with self-motion magnitude (i.e., speed) but temporal dynamics were diverse across the population. Analyses of laminar recordings showed a strong distance-dependent decrease for correlations in stimulus-induced (signal correlation) and stimulus-independent (noise correlation) components of spike-count variability, supporting the notion that neurons are spatially clustered with respect to their sensory representation of motion. Single-unit and multiunit response patterns were also correlated, but no other systematic dependencies on cortical layers or columns were observed. These findings describe a likely independent multimodal neural code for linear and angular self-motion in a posterior parietal area of the macaque brain that is connected to the hippocampal formation.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhy272