Non-contact acquisition of brain function using a time-extracted compact camera

A revolution in functional brain imaging techniques is in progress in the field of neurosciences. Optical imaging techniques, such as high-density diffuse optical tomography (HD-DOT), in which source-detector pairs of probes are placed on subjects’ heads, provide better portability than conventional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-11, Vol.9 (1), p.17854-9, Article 17854
Hauptverfasser: Ando, Takamasa, Nakamura, Tatsuya, Fujii, Toshiya, Shiono, Teruhiro, Nakamura, Tasuku, Suzuki, Masato, Anzue-Satoi, Naomi, Narumi, Kenji, Watanabe, Hisashi, Korenaga, Tsuguhiro, Okada, Eiji, Inoue, Yasunori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A revolution in functional brain imaging techniques is in progress in the field of neurosciences. Optical imaging techniques, such as high-density diffuse optical tomography (HD-DOT), in which source-detector pairs of probes are placed on subjects’ heads, provide better portability than conventional functional magnetic resonance imaging (fMRI) equipment. However, these techniques remain costly and can only acquire images at up to a few measurements per square centimetre, even when multiple detector probes are employed. In this study, we demonstrate functional brain imaging using a compact and affordable setup that employs nanosecond-order pulsed ordinary laser diodes and a time-extracted image sensor with superimposition capture of scattered components. Our technique can simply and easily attain a high density of measurement points without requiring probes to be attached, and can directly capture two-dimensional functional brain images. We have demonstrated brain activity imaging using a phantom that mimics the optical properties of an adult human head, and with a human subject, have measured cognitive brain activation while the subject is solving simple arithmetical tasks.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-54458-7