A peek into Epac physiology in the kidney

cAMP is a critical second messenger of numerous endocrine signals affecting water-electrolyte transport in the renal tubule. Exchange protein directly activated by cAMP (Epac) is a relatively recently discovered downstream effector of cAMP, having the same affinity to the second messenger as protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2019-11, Vol.317 (5), p.F1094-F1097
Hauptverfasser: Tomilin, Viktor N, Pochynyuk, Oleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:cAMP is a critical second messenger of numerous endocrine signals affecting water-electrolyte transport in the renal tubule. Exchange protein directly activated by cAMP (Epac) is a relatively recently discovered downstream effector of cAMP, having the same affinity to the second messenger as protein kinase A, the classical cAMP target. Two Epac isoforms, Epac1 and Epac2, are abundantly expressed in the renal epithelium, where they are thought to regulate water and electrolyte transport, particularly in the proximal tubule and collecting duct. Recent characterization of renal phenotype in mice lacking Epac1 and Epac2 revealed a critical role of the Epac signaling cascade in urinary concentration as well as in Na and urea excretion. In this review, we aim to critically summarize current knowledge of Epac relevance for renal function and to discuss the applicability of Epac-based strategies in the regulation of systemic water-electrolyte homeostasis.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00373.2019