Exercise stimulates beneficial adaptations to diminish doxorubicin-induced cellular toxicity
Doxorubicin (DOX) is a highly effective antitumor agent used for the treatment of a wide range of cancers. Unfortunately, DOX treatment results in cytotoxic side effects due to its accumulation within off-target tissues. DOX-induced cellular toxicity occurs as a result of increased oxidative damage,...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2019-11, Vol.317 (5), p.R662-R672 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doxorubicin (DOX) is a highly effective antitumor agent used for the treatment of a wide range of cancers. Unfortunately, DOX treatment results in cytotoxic side effects due to its accumulation within off-target tissues. DOX-induced cellular toxicity occurs as a result of increased oxidative damage, resulting in apoptosis and cell death. While there is no standard-of-care practice to prevent DOX-induced toxicity to healthy organs, exercise has been shown to prevent cellular dysfunction when combined with DOX chemotherapy. Endurance exercise stimulates numerous biochemical adaptations that promote a healthy phenotype in several vulnerable tissues without affecting the antineoplastic properties of DOX. Therefore, for the development of an effective strategy to combat the pathological effects of DOX, it is important to determine the appropriate exercise regimen to prescribe to cancer patients receiving DOX therapy and to understand the mechanisms responsible for exercise-induced protection against DOX toxicity to noncancer cells. This review summarizes the cytotoxic effects of DOX on the heart, skeletal muscle, liver, and kidneys and discusses the current understanding of the clinical benefits of regular physical activity and the potential mechanisms mediating the positive effects of exercise on each organ system. |
---|---|
ISSN: | 0363-6119 1522-1490 |
DOI: | 10.1152/ajpregu.00161.2019 |