Carbon source regulates polysaccharide capsule biosynthesis in Streptococcus pneumoniae

The exopolysaccharide capsule of Streptococcus pneumoniae is an important virulence factor, but the mechanisms that regulate capsule thickness are not fully understood. Here, we investigated the effects of various exogenously supplied carbohydrates on capsule production and gene expression in severa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-11, Vol.294 (46), p.17224-17238
Hauptverfasser: Troxler, Lukas J., Werren, Joel P., Schaffner, Thierry O., Mostacci, Nadezda, Vermathen, Peter, Vermathen, Martina, Wüthrich, Daniel, Simillion, Cedric, Brugger, Silvio D., Bruggmann, Rémy, Hathaway, Lucy J., Furrer, Julien, Hilty, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exopolysaccharide capsule of Streptococcus pneumoniae is an important virulence factor, but the mechanisms that regulate capsule thickness are not fully understood. Here, we investigated the effects of various exogenously supplied carbohydrates on capsule production and gene expression in several pneumococcal serotypes. Microscopy analyses indicated a near absence of the capsular polysaccharide (CPS) when S. pneumoniae was grown on fructose. Moreover, serotype 7F pneumococci produced much less CPS than strains of other serotypes (6B, 6C, 9V, 15, and 23F) when grown on glucose or sucrose. RNA-sequencing revealed carbon source-dependent regulation of distinct genes of WT strains and capsule-switch mutants of serotypes 6B and 7F, but could not explain the mechanism of capsule thickness regulation. In contrast, 31P NMR of whole-cell extract from capsule-knockout strains (Δcps) clearly revealed the accumulation or absence of capsule precursor metabolites when cells were grown on glucose or fructose, respectively. This finding suggests that fructose uptake mainly results in intracellular fructose 1-phosphate, which is not converted to CPS precursors. In addition, serotype 7F strains accumulated more precursors than did 6B strains, indicating less efficient conversion of precursor metabolites into the CPS in 7F, in line with its thinner capsule. Finally, isotopologue sucrose labeling and NMR analyses revealed that the uptake of the labeled fructose subunit into the capsule is
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.RA119.010764