Neural characteristics of successful and less successful speech and word learning in adults

A remarkable characteristic of the human nervous system is its ability to learn to integrate novel (foreign) complex sounds into words. However, the neural changes involved in how adults learn to integrate novel sounds into words and the associated individual differences are largely unknown. Unlike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2007-10, Vol.28 (10), p.995-1006
Hauptverfasser: Wong, Patrick C.M., Perrachione, Tyler K., Parrish, Todd B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A remarkable characteristic of the human nervous system is its ability to learn to integrate novel (foreign) complex sounds into words. However, the neural changes involved in how adults learn to integrate novel sounds into words and the associated individual differences are largely unknown. Unlike English, most languages of the world use pitch patterns to mark individual word meaning. We report a study assessing the neural correlates of learning to use these pitch patterns in words by English‐speaking adults who had no previous exposure to such usage. Before and after training, subjects discriminated pitch patterns of the words they learned while blood oxygenation levels were measured using fMRI. Subjects who mastered the learning program showed increased activation in the left posterior superior temporal region after training, while subjects who plateaued at lower levels showed increased activation in the right superior temporal region and right inferior frontal gyrus, which are associated with nonlinguistic pitch processing, and prefrontal and medial frontal areas, which are associated with increased working memory and attentional efforts. Furthermore, we found brain activation differences even before training between the two subject groups, including the superior temporal region. These results demonstrate an association between range of neural changes and degrees of language learning, specifically implicating the physiologic contribution of the left dorsal auditory cortex in learning success. Hum Brain Mapp 2006. © 2006 Wiley‐Liss, Inc.
ISSN:1065-9471
1097-0193
DOI:10.1002/hbm.20330