Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms
Drug response variations amongst different individuals/populations are influenced by several factors including allele frequency differences of single nucleotide polymorphisms (SNPs) that functionally affect drug-response genes. Here, we aim to identify drugs that potentially exhibit population diffe...
Gespeichert in:
Veröffentlicht in: | The pharmacogenomics journal 2019-12, Vol.19 (6), p.516-527 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drug response variations amongst different individuals/populations are influenced by several factors including allele frequency differences of single nucleotide polymorphisms (SNPs) that functionally affect drug-response genes. Here, we aim to identify drugs that potentially exhibit population differences in response using SNP data mining and analytics. Ninety-one pairwise-comparisons of >22,000,000 SNPs from the 1000 Genomes Project, across 14 different populations, were performed to identify ‘population-differentiated’ SNPs (pdSNPs). Potentially-functional pdSNPs (pf-pdSNPs) were then selected, mapped into genes, and integrated with drug–gene databases to identify ‘population-differentiated’ drugs enriched with genes carrying pf-pdSNPs. 1191 clinically-approved drugs were found to be significantly enriched (
Z
> 2.58) with genes carrying SNPs that were differentiated in one or more population-pair comparisons. Thirteen drugs were found to be enriched with such differentiated genes across all 91 population-pairs. Notably, 82% of drugs, which were previously reported in the literature to exhibit population differences in response were also found by this method to contain a significant enrichment of population specific differentiated SNPs. Furthermore, drugs with genetic testing labels, or those suspected to cause adverse reactions, contained a significantly larger number (
P
|
---|---|
ISSN: | 1470-269X 1473-1150 |
DOI: | 10.1038/s41397-019-0096-y |