The human subthalamic nucleus and globus pallidus internus differentially encode reward during action control

The subthalamic nucleus (STN) and globus pallidus internus (GPi) have recently been shown to encode reward, but few studies have been performed in humans. We investigated STN and GPi encoding of reward and loss (i.e., valence) in humans with Parkinson's disease. To test the hypothesis that STN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2017-04, Vol.38 (4), p.1952-1964
Hauptverfasser: Justin Rossi, Peter, Peden, Corinna, Castellanos, Oscar, Foote, Kelly D., Gunduz, Aysegul, Okun, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The subthalamic nucleus (STN) and globus pallidus internus (GPi) have recently been shown to encode reward, but few studies have been performed in humans. We investigated STN and GPi encoding of reward and loss (i.e., valence) in humans with Parkinson's disease. To test the hypothesis that STN and GPi neurons would change their firing rate in response to reward‐ and loss‐related stimuli, we recorded the activity of individual neurons while participants performed a behavioral task. In the task, action choices were associated with potential rewarding, punitive, or neutral outcomes. We found that STN and GPi neurons encode valence‐related information during action control, but the proportion of valence‐responsive neurons was greater in the STN compared to the GPi. In the STN, reward‐related stimuli mobilized a greater proportion of neurons than loss‐related stimuli. We also found surprising limbic overlap with the sensorimotor regions in both the STN and GPi, and this overlap was greater than has been previously reported. These findings may help to explain alterations in limbic function that have been observed following deep brain stimulation therapy of the STN and GPi. Hum Brain Mapp 38:1952–1964, 2017. © 2017 Wiley Periodicals, Inc.
ISSN:1065-9471
1097-0193
DOI:10.1002/hbm.23496