Musical training induces functional and structural auditory‐motor network plasticity in young adults
Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and be...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2018-05, Vol.39 (5), p.2098-2110 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long‐term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting‐state functional connectivity (rs‐FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory‐motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory‐motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance‐related regions, which provides insights into the mechanism of brain plasticity in young adults. |
---|---|
ISSN: | 1065-9471 1097-0193 |
DOI: | 10.1002/hbm.23989 |