Phosphofructokinase-1 and fructose bisphosphatase-1 in canine liver and kidney
In healthy individuals, plasma glucose levels are maintained within a normal range. During fasting, endogenous glucose is released either through glycogenolysis or gluconeogenesis. Gluconeogenesis involves the formation of glucose-6-phosphate from a variety of precursors followed by its subsequent h...
Gespeichert in:
Veröffentlicht in: | Journal of Veterinary Medical Science 2019, Vol.81(10), pp.1515-1521 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In healthy individuals, plasma glucose levels are maintained within a normal range. During fasting, endogenous glucose is released either through glycogenolysis or gluconeogenesis. Gluconeogenesis involves the formation of glucose-6-phosphate from a variety of precursors followed by its subsequent hydrolysis to glucose. Gluconeogenesis occurs in the liver and the kidney. In order to compare gluconeogenesis in canine liver and kidney, the activity and expression of the rate limiting enzymes that catalyze the fructose-6-phosphate and fructose 1,6-bisphosphate steps, namely, phosphofructokinase-1 (PFK-1) (glycolysis) and fructose bisphosphatase-1 (FBP-1) (gluconeogenesis), were examined. Healthy male and female beagle dogs aged 1–2 years were euthanized humanely, and samples of their liver and kidney were obtained for analysis. The levels of PFK-1 and FBP-1 in canine liver and kidney were assessed by enzymatic assays, Western blotting, and RT-qPCR. Enzyme assays showed that, in dogs, the kidney had higher specific activity of PFK-1 and FBP-1 than the liver. Western blotting and RT-qPCR data demonstrated that of the three different subunits (PFK-M, PFK-L, and PFK-P) the PFK-1 in canine liver mainly comprised PFK-L, whereas the PFK-1 in the canine kidney comprised all three subunits. As a result of these differences in the subunit composition of PFK-1, glucose metabolism might be regulated differently in the liver and kidney. |
---|---|
ISSN: | 0916-7250 1347-7439 |
DOI: | 10.1292/jvms.19-0361 |