Mixed-Cropping Between Field Pea Varieties Alters Root Bacterial and Fungal Communities
Modern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated mic...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-11, Vol.9 (1), p.16953-10, Article 16953 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (
Pisum sativum
L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-53342-8 |