ATRX In-Frame Fusion Neuroblastoma Is Sensitive to EZH2 Inhibition via Modulation of Neuronal Gene Signatures
ATRX alterations occur at high frequency in neuroblastoma of adolescents and young adults. Particularly intriguing are the large N-terminal deletions of ATRX (Alpha Thalassemia/Mental Retardation, X-linked) that generate in-frame fusion (IFF) proteins devoid of key chromatin interaction domains, whi...
Gespeichert in:
Veröffentlicht in: | Cancer cell 2019-11, Vol.36 (5), p.512-527.e9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ATRX alterations occur at high frequency in neuroblastoma of adolescents and young adults. Particularly intriguing are the large N-terminal deletions of ATRX (Alpha Thalassemia/Mental Retardation, X-linked) that generate in-frame fusion (IFF) proteins devoid of key chromatin interaction domains, while retaining the SWI/SNF-like helicase region. We demonstrate that ATRX IFF proteins are redistributed from H3K9me3-enriched chromatin to promoters of active genes and identify REST as an ATRX IFF target whose activation promotes silencing of neuronal differentiation genes. We further show that ATRX IFF cells display sensitivity to EZH2 inhibitors, due to derepression of neurogenesis genes, including a subset of REST targets. Taken together, we demonstrate that ATRX structural alterations are not loss-of-function and put forward EZH2 inhibitors as a potential therapy for ATRX IFF neuroblastoma.
[Display omitted]
•ATRX IFFs are redistributed genome wide and are enriched at active promoters•The neuronal silencing transcription factor REST is an ATRX IFF target gene•REST and EZH2 silence neuronal gene programs in ATRX IFF NB•REST loss or EZH2 inhibition induces neuronal gene expression programs and NB cell death
Qadeer et al. show that ATRX in-frame fusions (IFF), found in a subset of neuroblastomas, are redistributed from wild-type ATRX-binding sites to other genomic regions, including the REST promoter. REST expression silences neuronal differentiation genes, which can be derepressed with EZH2 inhibitors to suppress ATRX IFF cell growth. |
---|---|
ISSN: | 1535-6108 1878-3686 |
DOI: | 10.1016/j.ccell.2019.09.002 |