Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI
Purpose This study aimed to evaluate the accuracy and diagnostic test performance of the U-net-based segmentation method in neuromelanin magnetic resonance imaging (NM-MRI) compared to the established manual segmentation method for Parkinson’s disease (PD) diagnosis. Methods NM-MRI datasets from two...
Gespeichert in:
Veröffentlicht in: | Neuroradiology 2019-12, Vol.61 (12), p.1387-1395 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
This study aimed to evaluate the accuracy and diagnostic test performance of the U-net-based segmentation method in neuromelanin magnetic resonance imaging (NM-MRI) compared to the established manual segmentation method for Parkinson’s disease (PD) diagnosis.
Methods
NM-MRI datasets from two different 3T-scanners were used: a “principal dataset” with 122 participants and an “external validation dataset” with 24 participants, including 62 and 12 PD patients, respectively. Two radiologists performed SNpc manual segmentation. Inter-reader precision was determined using Dice coefficients. The U-net was trained with manual segmentation as ground truth and Dice coefficients used to measure accuracy. Training and validation steps were performed on the principal dataset using a 4-fold cross-validation method. We tested the U-net on the external validation dataset. SNpc hyperintense areas were estimated from U-net and manual segmentation masks, replicating a previously validated thresholding method, and their diagnostic test performances for PD determined.
Results
For SNpc segmentation, U-net accuracy was comparable to inter-reader precision in the principal dataset (Dice coefficient: U-net, 0.83 ± 0.04; inter-reader, 0.83 ± 0.04), but lower in external validation dataset (Dice coefficient: U-net, 079 ± 0.04; inter-reader, 0.85 ± 0.03). Diagnostic test performances for PD were comparable between U-net and manual segmentation methods in both principal (area under the receiver operating characteristic curve: U-net, 0.950; manual, 0.948) and external (U-net, 0.944; manual, 0.931) datasets.
Conclusion
U-net segmentation provided relatively high accuracy in the evaluation of the SNpc in NM-MRI and yielded diagnostic performance comparable to that of the established manual method. |
---|---|
ISSN: | 0028-3940 1432-1920 |
DOI: | 10.1007/s00234-019-02279-w |