Hydrogen-Induced Step-Edge Roughening of Platinum Electrode Surfaces
Electrode surfaces may change their surface structure as a result of the adsorption of chemical species, impacting their catalytic activity. Using density functional theory, we find that the strong adsorption of hydrogen at low electrode potentials promotes the thermodynamics and kinetics of a uniqu...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2019-11, Vol.10 (21), p.6842-6849 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrode surfaces may change their surface structure as a result of the adsorption of chemical species, impacting their catalytic activity. Using density functional theory, we find that the strong adsorption of hydrogen at low electrode potentials promotes the thermodynamics and kinetics of a unique type of roughening of 110-type Pt step edges. This change in surface structure causes the appearance of the so-called “third hydrogen peak” in voltammograms measured on Pt electrodes, an observation that has eluded explanation for over 50 years. Understanding this roughening process is important for structure-sensitive (electro)catalysis and the development of active and stable catalysts. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.9b02544 |