Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale

We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-11, Vol.10 (21), p.6727-6733
Hauptverfasser: Schnedermann, Christoph, Sung, Jooyoung, Pandya, Raj, Verma, Sachin Dev, Chen, Richard Y. S, Gauriot, Nicolas, Bretscher, Hope M, Kukura, Philipp, Rao, Akshay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman microspectroscopy, which is used for in situ verification of the chemical identity in the 100–2000 cm–1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy, allowing for the study of ultrafast transport properties down to the nanometer length scale.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.9b02437