Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal
Cellular stress responses serve as crucial decision points balancing persistence or culling of hematopoietic stem cells (HSCs) for lifelong blood production. Although strong stressors cull HSCs, the linkage between stress programs and self-renewal properties that underlie human HSC maintenance remai...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2019-11, Vol.25 (5), p.639-653.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellular stress responses serve as crucial decision points balancing persistence or culling of hematopoietic stem cells (HSCs) for lifelong blood production. Although strong stressors cull HSCs, the linkage between stress programs and self-renewal properties that underlie human HSC maintenance remains unknown, particularly at quiescence exit when HSCs must also dynamically shift metabolic state. Here, we demonstrate distinct wiring of the sphingolipidome across the human hematopoietic hierarchy and find that genetic or pharmacologic modulation of the sphingolipid enzyme DEGS1 regulates lineage differentiation. Inhibition of DEGS1 in hematopoietic stem and progenitor cells during the transition from quiescence to cellular activation with N-(4-hydroxyphenyl) retinamide activates coordinated stress pathways that coalesce on endoplasmic reticulum stress and autophagy programs to maintain immunophenotypic and functional HSCs. Thus, our work identifies a linkage between sphingolipid metabolism, proteostatic quality control systems, and HSC self-renewal and provides therapeutic targets for improving HSC-based cellular therapeutics.
[Display omitted]
•Sphingolipid composition is diverse across the human hematopoietic hierarchy•DEGS1 is a sphingolipid enzyme required for hematopoietic stem cell (HSC) function•Modulating DEGS1 function activates autophagy and the unfolded protein response•Variations in sphingolipid homeostasis serve to regulate HSC fate
Lipid metabolism is distinctly regulated in human hematopoietic stem cells (HSCs) versus progenitors. Xie et al. profiled the sphingolipidome in human cord blood and show that modulating sphingolipids during the transition from quiescence to cellular activation in ex vivo culture induced proteostatic cellular stress programs to maintain HSC self-renewal. |
---|---|
ISSN: | 1934-5909 1875-9777 |
DOI: | 10.1016/j.stem.2019.09.008 |