Unmodified autologous stem cells at point of care for chronic myocardial infarction
BACKGROUNDNumerous studies investigated cell-based therapies for myocardial infarction (MI). The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI. Experimental studies on animal models demonstrated the potentia...
Gespeichert in:
Veröffentlicht in: | World journal of stem cells 2019-10, Vol.11 (10), p.831-858 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUNDNumerous studies investigated cell-based therapies for myocardial infarction (MI). The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI. Experimental studies on animal models demonstrated the potential of fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) for treating acute MI. In contrast, studies on the treatment of chronic MI (CMI; > 4 wk post-MI) with UA-ADRCs have not been published so far. Among several methods for delivering cells to the myocardium, retrograde delivery into a temporarily blocked coronary vein has recently been demonstrated as an effective option. AIMTo test the hypothesis that in experimentally-induced chronic myocardial infarction (CMI; > 4 wk post-MI) in pigs, retrograde delivery of fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) into a temporarily blocked coronary vein improves cardiac function and structure. METHODSThe left anterior descending (LAD) coronary artery of pigs was blocked for 180 min at time point T0. Then, either 18 × 106 UA-ADRCs prepared at "point of care" or saline as control were retrogradely delivered via an over-the-wire balloon catheter placed in the temporarily blocked LAD vein 4 wk after T0 (T1). Effects of cells or saline were assessed by cardiac magnetic resonance (CMR) imaging, late gadolinium enhancement CMR imaging, and post mortem histologic analysis 10 wk after T0 (T2). RESULTSUnlike the delivery of saline, delivery of UA-ADRCs demonstrated statistically significant improvements in cardiac function and structure at T2 compared to T1 (all values given as mean ± SE): Increased mean LVEF (UA-ADRCs group: 34.3% ± 2.9% at T1 vs 40.4 ± 2.6% at T2, P = 0.037; saline group: 37.8% ± 2.6% at T1 vs 36.2% ± 2.4% at T2, P > 0.999), increased mean cardiac output (UA-ADRCs group: 2.7 ± 0.2 L/min at T1 vs 3.8 ± 0.2 L/min at T2, P = 0.002; saline group: 3.4 ± 0.3 L/min at T1 vs 3.6 ± 0.3 L/min at T2, P = 0.798), increased mean mass of the left ventricle (UA-ADRCs group: 55.3 ± 5.0 g at T1 vs 71.3 ± 4.5 g at T2, P < 0.001; saline group: 63.2 ± 3.4 g at T1 vs 68.4 ± 4.0 g at T2, P = 0.321) and reduced mean relative amount of scar volume of the left ventricular wall (UA-ADRCs group: 20.9% ± 2.3% at T1 vs 16.6% ± 1.2% at T2, P = 0.042; saline group: 17.6% ± 1.4% at T1 vs 22.7% ± 1.8% at T2, P = 0.022). CONCLUSIONRetrograde cell delivery of UA-ADR |
---|---|
ISSN: | 1948-0210 1948-0210 |
DOI: | 10.4252/wjsc.v11.i10.831 |