Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer
Despite effective strategies, resistance in HER2 breast cancer remains a challenge. While the mevalonate pathway (MVA) is suggested to promote cell growth and survival, including in HER2 models, its potential role in resistance to HER2-targeted therapy is unknown. Parental HER2 breast cancer cells a...
Gespeichert in:
Veröffentlicht in: | Molecular cancer research 2019-11, Vol.17 (11), p.2318-2330 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite effective strategies, resistance in HER2
breast cancer remains a challenge. While the mevalonate pathway (MVA) is suggested to promote cell growth and survival, including in HER2
models, its potential role in resistance to HER2-targeted therapy is unknown. Parental HER2
breast cancer cells and their lapatinib-resistant and lapatinib + trastuzumab-resistant derivatives were used for this study. MVA activity was found to be increased in lapatinib-resistant and lapatinib + trastuzumab-resistant cells. Specific blockade of this pathway with lipophilic but not hydrophilic statins and with the N-bisphosphonate zoledronic acid led to apoptosis and substantial growth inhibition of R cells. Inhibition was rescued by mevalonate or the intermediate metabolites farnesyl pyrophosphate or geranylgeranyl pyrophosphate, but not cholesterol. Activated Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and mTORC1 signaling, and their downstream target gene product Survivin, were inhibited by MVA blockade, especially in the lapatinib-resistant/lapatinib + trastuzumab-resistant models. Overexpression of constitutively active YAP rescued Survivin and phosphorylated-S6 levels, despite blockade of the MVA. These results suggest that the MVA provides alternative signaling leading to cell survival and resistance by activating YAP/TAZ-mTORC1-Survivin signaling when HER2 is blocked, suggesting novel therapeutic targets. MVA inhibitors including lipophilic statins and N-bisphosphonates may circumvent resistance to anti-HER2 therapy warranting further clinical investigation. IMPLICATIONS: The MVA was found to constitute an escape mechanism of survival and growth in HER2
breast cancer models resistant to anti-HER2 therapies. MVA inhibitors such as simvastatin and zoledronic acid are potential therapeutic agents to resensitize the tumors that depend on the MVA to progress on anti-HER2 therapies. |
---|---|
ISSN: | 1541-7786 1557-3125 |
DOI: | 10.1158/1541-7786.MCR-19-0756 |