Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites

The Highly ABA-Induced 1 (HAI1) protein phosphatase is a central component of drought-related signaling. A screen for HAI1-interacting proteins identified HAI1-Interactor 1 (HIN1), a nuclear protein of unknown function which could be dephosphorylated by HAI1 in vitro. HIN1 colocalization and interac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-10, Vol.116 (44), p.22376-22385
Hauptverfasser: Chong, Geeng Loo, Foo, Mung Hsia, Lin, Wen-Dar, Wong, Min May, Verslues, Paul E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Highly ABA-Induced 1 (HAI1) protein phosphatase is a central component of drought-related signaling. A screen for HAI1-interacting proteins identified HAI1-Interactor 1 (HIN1), a nuclear protein of unknown function which could be dephosphorylated by HAI1 in vitro. HIN1 colocalization and interaction with serine-arginine rich (SR) splicing factors and appearance of nuclear speckle-localized HIN1 during low water potential (ψw) stress suggested a pre-mRNA splicing-related function. RNA sequencing of Arabidopsis Col-0 wild type identified more than 500 introns where moderate severity low ψw altered intron retention (IR) frequency. Surprisingly, nearly 90% of these had increased splicing efficiency (decreased IR) during stress. For one-third of these introns, ectopic HIN1 expression (35S:HIN1) in unstressed plants mimicked the increased splicing efficiency seen in stress-treated wild type. HIN1 bound to a GAA-repeat, Exonic Splicing Enhancer-like RNA motif enriched in flanking sequence around HIN1-regulated introns. Genes with stress and HIN1-affected splicing efficiency were enriched for abiotic stress and signaling-related functions. The 35S:HIN1 plants had enhanced growth maintenance during low ψw, while hin1 mutants had reduced growth, further indicating the role of HIN1 in drought response. HIN1 is annotated as an MYB/SANT domain protein but has limited homology to other MYB/SANT proteins and is not related to known yeast or metazoan RNA-binding proteins or splicing regulators. Together these data identify HIN1 as a plant-specific RNA-binding protein, show a specific effect of drought acclimation to promote splicing efficiency of IR-prone introns, and also discover HAI1–HIN1 interaction and dephosphorylation that connects stress signaling to splicing regulation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1906244116