Histone Deacetylase 7 Inhibition in a Murine Model of Gram-Negative Pneumonia-Induced Acute Lung Injury

BACKGROUND:Pulmonary infections remain the most common cause of Acute Respiratory Distress Syndrome (ARDS), a pulmonary inflammatory disease with high mortality, for which no targeted therapy currently exists. We have previously demonstrated an ameliorated syndrome with early, broad spectrum Histone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock (Augusta, Ga.) Ga.), 2020-03, Vol.53 (3), p.344-351
Hauptverfasser: Kasotakis, George, Kintsurashvili, Ekaterina, Galvan, Manuel D., Graham, Christopher, Purves, J. Todd, Agarwal, Suresh, Corcoran, David L., Sullenger, Bruce A., Palmer, Scott M., Remick, Daniel G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND:Pulmonary infections remain the most common cause of Acute Respiratory Distress Syndrome (ARDS), a pulmonary inflammatory disease with high mortality, for which no targeted therapy currently exists. We have previously demonstrated an ameliorated syndrome with early, broad spectrum Histone Deacetylase (HDAC) inhibition in a murine model of gram-negative pneumonia-induced Acute Lung Injury (ALI), the underlying pulmonary pathologic phenotype leading to ARDS. With the current project we aim to determine if selective inhibition of a specific HDAC leads to a similar pro-survival phenotype, potentially pointing to a future therapeutic target. METHODS:C57Bl/6 mice underwent endotracheal instillation of 30×10Escherichia coli (strain 19138) versus saline (n = 24). Half the infected mice were administered Trichostatin A (TSA) 30 min later. All animals were sacrificed 6 h later for tissue sampling and HDAC quantification, while another set of animals (n = 24) was followed to determine survival. Experiments were repeated with selective siRNA inhibition of the HDAC demonstrating the greatest inhibition versus scrambled siRNA (n = 24). RESULTS:TSA significantly ameliorated the inflammatory phenotype and improved survival in infected-ALI mice, and HDAC7 was the HDAC with the greatest transcription and protein translation suppression. Similar results were obtained with selective HDAC7 siRNA inhibition compared with scrambled siRNA. CONCLUSION:HDAC7 appears to play a key role in the inflammatory response that leads to ALI after gram-negative pneumonia in mice.
ISSN:1073-2322
1540-0514
DOI:10.1097/SHK.0000000000001372