Regenerable Acidity of Graphene Oxide in Promoting Multicomponent Organic Synthesis
The Brønsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, roles and functionality of Lewis acid sites remain elusive. Herein, we reported a carbocatalytic approach utilizing both Brønsted and Lewis acid sites in GOs as heterogeneous promoters i...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-10, Vol.9 (1), p.15579-12, Article 15579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Brønsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, roles and functionality of Lewis acid sites remain elusive. Herein, we reported a carbocatalytic approach utilizing both Brønsted and Lewis acid sites in GOs as heterogeneous promoters in a series of multicomponent synthesis of triazoloquinazolinone compounds. The GOs possessing the highest degree of oxidation, also having the highest amounts of Lewis acid sites, enable optimal yields (up to 95%) under mild and non-toxic reaction conditions (85 °C in EtOH). The results of FT-IR spectroscopy, temperature-programed decomposition mass spectrometry, and X-ray photoelectron spectroscopy identified that the apparent Lewis acidity via basal plane epoxide ring opening, on top of the saturated Brønsted acidic carboxylic groups, is responsible for the enhanced carbocatalytic activities involving Knoevenagel condensation pathway. Recycled GO can be effectively regenerated to reach 97% activity of fresh GO, supporting the recognition of GO as pseudocatalyst in organic synthesis. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-51833-2 |