A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping
This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimati...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116081 |
---|---|
container_issue | |
container_start_page | 116081 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 202 |
creator | Caballero-Gaudes, César Moia, Stefano Panwar, Puja Bandettini, Peter A. Gonzalez-Castillo, Javier |
description | This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events.
•A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing. |
doi_str_mv | 10.1016/j.neuroimage.2019.116081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191930669X</els_id><sourcerecordid>2307688850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoh_wF5AlLlyyeOzYcTgglYpCpa5AfJyN155kvUriYCcr8e_r1ZYWuHAaS_PMO-P3LQoCdAUU5OvdasQlBj-YDleMQrMCkFTBo-IUaCPKRtTs8eEteKkAmpPiLKUdpbSBSj0tTjhU0Ejgp8WPC-LQhnEf-mX2YSSm70L083YgbYhkWPrZl2i3gbTLaA-E6cn6y_Ubsn5ofZ1MTEg-m2ic7wZyFRHJ2kyTH7tnxZPW9Amf39Xz4vvV-2-XH8ubTx-uLy9uSitoPZfc8Y1QQknJJAjbYsUlB26rCjmtG-XaGiwydI5Ja7jZtE61gokGa8dsy_l58faoOy2bAZ3FcY6m11PMJsVfOhiv_-6Mfqu7sNdSQcNqmQVe3QnE8HPBNOvBJ4t9b0YMS9KM1YLVICuR0Zf_oLuwxOxMpvK1UiklaKbUkbIxpBSxvT8GqD7EqHf6IUZ9iFEfY8yjL_78zP3g79wy8O4IYLZ07zHqZD2OFp2PaGftgv__lltBULSd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307688850</pqid></control><display><type>article</type><title>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Caballero-Gaudes, César ; Moia, Stefano ; Panwar, Puja ; Bandettini, Peter A. ; Gonzalez-Castillo, Javier</creator><creatorcontrib>Caballero-Gaudes, César ; Moia, Stefano ; Panwar, Puja ; Bandettini, Peter A. ; Gonzalez-Castillo, Javier</creatorcontrib><description>This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events.
•A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2019.116081</identifier><identifier>PMID: 31419613</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; BOLD fMRI ; Brain - physiology ; Brain mapping ; Brain Mapping - methods ; Datasets ; Deconvolution ; Estimates ; Female ; Functional magnetic resonance imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging ; Male ; Methods ; Multi-echo ; Multimedia ; NMR ; Nuclear magnetic resonance ; Physiology ; ROC Curve ; Signal Processing, Computer-Assisted ; Single-trial ; Sparsity ; Time series ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</citedby><cites>FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2307688850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31419613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caballero-Gaudes, César</creatorcontrib><creatorcontrib>Moia, Stefano</creatorcontrib><creatorcontrib>Panwar, Puja</creatorcontrib><creatorcontrib>Bandettini, Peter A.</creatorcontrib><creatorcontrib>Gonzalez-Castillo, Javier</creatorcontrib><title>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events.
•A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.</description><subject>Adult</subject><subject>Algorithms</subject><subject>BOLD fMRI</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Datasets</subject><subject>Deconvolution</subject><subject>Estimates</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Methods</subject><subject>Multi-echo</subject><subject>Multimedia</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physiology</subject><subject>ROC Curve</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Single-trial</subject><subject>Sparsity</subject><subject>Time series</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhiMEoh_wF5AlLlyyeOzYcTgglYpCpa5AfJyN155kvUriYCcr8e_r1ZYWuHAaS_PMO-P3LQoCdAUU5OvdasQlBj-YDleMQrMCkFTBo-IUaCPKRtTs8eEteKkAmpPiLKUdpbSBSj0tTjhU0Ejgp8WPC-LQhnEf-mX2YSSm70L083YgbYhkWPrZl2i3gbTLaA-E6cn6y_Ubsn5ofZ1MTEg-m2ic7wZyFRHJ2kyTH7tnxZPW9Amf39Xz4vvV-2-XH8ubTx-uLy9uSitoPZfc8Y1QQknJJAjbYsUlB26rCjmtG-XaGiwydI5Ja7jZtE61gokGa8dsy_l58faoOy2bAZ3FcY6m11PMJsVfOhiv_-6Mfqu7sNdSQcNqmQVe3QnE8HPBNOvBJ4t9b0YMS9KM1YLVICuR0Zf_oLuwxOxMpvK1UiklaKbUkbIxpBSxvT8GqD7EqHf6IUZ9iFEfY8yjL_78zP3g79wy8O4IYLZ07zHqZD2OFp2PaGftgv__lltBULSd</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Caballero-Gaudes, César</creator><creator>Moia, Stefano</creator><creator>Panwar, Puja</creator><creator>Bandettini, Peter A.</creator><creator>Gonzalez-Castillo, Javier</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191115</creationdate><title>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</title><author>Caballero-Gaudes, César ; Moia, Stefano ; Panwar, Puja ; Bandettini, Peter A. ; Gonzalez-Castillo, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>BOLD fMRI</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Datasets</topic><topic>Deconvolution</topic><topic>Estimates</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Methods</topic><topic>Multi-echo</topic><topic>Multimedia</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physiology</topic><topic>ROC Curve</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Single-trial</topic><topic>Sparsity</topic><topic>Time series</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero-Gaudes, César</creatorcontrib><creatorcontrib>Moia, Stefano</creatorcontrib><creatorcontrib>Panwar, Puja</creatorcontrib><creatorcontrib>Bandettini, Peter A.</creatorcontrib><creatorcontrib>Gonzalez-Castillo, Javier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caballero-Gaudes, César</au><au>Moia, Stefano</au><au>Panwar, Puja</au><au>Bandettini, Peter A.</au><au>Gonzalez-Castillo, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2019-11-15</date><risdate>2019</risdate><volume>202</volume><spage>116081</spage><epage>116081</epage><pages>116081-116081</pages><artnum>116081</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events.
•A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31419613</pmid><doi>10.1016/j.neuroimage.2019.116081</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819276 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Adult Algorithms BOLD fMRI Brain - physiology Brain mapping Brain Mapping - methods Datasets Deconvolution Estimates Female Functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging Male Methods Multi-echo Multimedia NMR Nuclear magnetic resonance Physiology ROC Curve Signal Processing, Computer-Assisted Single-trial Sparsity Time series Young Adult |
title | A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deconvolution%20algorithm%20for%20multi-echo%20functional%20MRI:%20Multi-echo%20Sparse%20Paradigm%20Free%20Mapping&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Caballero-Gaudes,%20C%C3%A9sar&rft.date=2019-11-15&rft.volume=202&rft.spage=116081&rft.epage=116081&rft.pages=116081-116081&rft.artnum=116081&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2019.116081&rft_dat=%3Cproquest_pubme%3E2307688850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307688850&rft_id=info:pmid/31419613&rft_els_id=S105381191930669X&rfr_iscdi=true |