A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping

This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081
Hauptverfasser: Caballero-Gaudes, César, Moia, Stefano, Panwar, Puja, Bandettini, Peter A., Gonzalez-Castillo, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116081
container_issue
container_start_page 116081
container_title NeuroImage (Orlando, Fla.)
container_volume 202
creator Caballero-Gaudes, César
Moia, Stefano
Panwar, Puja
Bandettini, Peter A.
Gonzalez-Castillo, Javier
description This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events. •A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.
doi_str_mv 10.1016/j.neuroimage.2019.116081
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191930669X</els_id><sourcerecordid>2307688850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoh_wF5AlLlyyeOzYcTgglYpCpa5AfJyN155kvUriYCcr8e_r1ZYWuHAaS_PMO-P3LQoCdAUU5OvdasQlBj-YDleMQrMCkFTBo-IUaCPKRtTs8eEteKkAmpPiLKUdpbSBSj0tTjhU0Ejgp8WPC-LQhnEf-mX2YSSm70L083YgbYhkWPrZl2i3gbTLaA-E6cn6y_Ubsn5ofZ1MTEg-m2ic7wZyFRHJ2kyTH7tnxZPW9Amf39Xz4vvV-2-XH8ubTx-uLy9uSitoPZfc8Y1QQknJJAjbYsUlB26rCjmtG-XaGiwydI5Ja7jZtE61gokGa8dsy_l58faoOy2bAZ3FcY6m11PMJsVfOhiv_-6Mfqu7sNdSQcNqmQVe3QnE8HPBNOvBJ4t9b0YMS9KM1YLVICuR0Zf_oLuwxOxMpvK1UiklaKbUkbIxpBSxvT8GqD7EqHf6IUZ9iFEfY8yjL_78zP3g79wy8O4IYLZ07zHqZD2OFp2PaGftgv__lltBULSd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307688850</pqid></control><display><type>article</type><title>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Caballero-Gaudes, César ; Moia, Stefano ; Panwar, Puja ; Bandettini, Peter A. ; Gonzalez-Castillo, Javier</creator><creatorcontrib>Caballero-Gaudes, César ; Moia, Stefano ; Panwar, Puja ; Bandettini, Peter A. ; Gonzalez-Castillo, Javier</creatorcontrib><description>This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events. •A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2019.116081</identifier><identifier>PMID: 31419613</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; BOLD fMRI ; Brain - physiology ; Brain mapping ; Brain Mapping - methods ; Datasets ; Deconvolution ; Estimates ; Female ; Functional magnetic resonance imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging ; Male ; Methods ; Multi-echo ; Multimedia ; NMR ; Nuclear magnetic resonance ; Physiology ; ROC Curve ; Signal Processing, Computer-Assisted ; Single-trial ; Sparsity ; Time series ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</citedby><cites>FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2307688850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31419613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caballero-Gaudes, César</creatorcontrib><creatorcontrib>Moia, Stefano</creatorcontrib><creatorcontrib>Panwar, Puja</creatorcontrib><creatorcontrib>Bandettini, Peter A.</creatorcontrib><creatorcontrib>Gonzalez-Castillo, Javier</creatorcontrib><title>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events. •A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.</description><subject>Adult</subject><subject>Algorithms</subject><subject>BOLD fMRI</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Datasets</subject><subject>Deconvolution</subject><subject>Estimates</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Methods</subject><subject>Multi-echo</subject><subject>Multimedia</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physiology</subject><subject>ROC Curve</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Single-trial</subject><subject>Sparsity</subject><subject>Time series</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhiMEoh_wF5AlLlyyeOzYcTgglYpCpa5AfJyN155kvUriYCcr8e_r1ZYWuHAaS_PMO-P3LQoCdAUU5OvdasQlBj-YDleMQrMCkFTBo-IUaCPKRtTs8eEteKkAmpPiLKUdpbSBSj0tTjhU0Ejgp8WPC-LQhnEf-mX2YSSm70L083YgbYhkWPrZl2i3gbTLaA-E6cn6y_Ubsn5ofZ1MTEg-m2ic7wZyFRHJ2kyTH7tnxZPW9Amf39Xz4vvV-2-XH8ubTx-uLy9uSitoPZfc8Y1QQknJJAjbYsUlB26rCjmtG-XaGiwydI5Ja7jZtE61gokGa8dsy_l58faoOy2bAZ3FcY6m11PMJsVfOhiv_-6Mfqu7sNdSQcNqmQVe3QnE8HPBNOvBJ4t9b0YMS9KM1YLVICuR0Zf_oLuwxOxMpvK1UiklaKbUkbIxpBSxvT8GqD7EqHf6IUZ9iFEfY8yjL_78zP3g79wy8O4IYLZ07zHqZD2OFp2PaGftgv__lltBULSd</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Caballero-Gaudes, César</creator><creator>Moia, Stefano</creator><creator>Panwar, Puja</creator><creator>Bandettini, Peter A.</creator><creator>Gonzalez-Castillo, Javier</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191115</creationdate><title>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</title><author>Caballero-Gaudes, César ; Moia, Stefano ; Panwar, Puja ; Bandettini, Peter A. ; Gonzalez-Castillo, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-3d3b5858662615cfe436313c44e30798df71ce2edd26ca3abfd8f5259e7d2cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>BOLD fMRI</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Datasets</topic><topic>Deconvolution</topic><topic>Estimates</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Methods</topic><topic>Multi-echo</topic><topic>Multimedia</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physiology</topic><topic>ROC Curve</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Single-trial</topic><topic>Sparsity</topic><topic>Time series</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero-Gaudes, César</creatorcontrib><creatorcontrib>Moia, Stefano</creatorcontrib><creatorcontrib>Panwar, Puja</creatorcontrib><creatorcontrib>Bandettini, Peter A.</creatorcontrib><creatorcontrib>Gonzalez-Castillo, Javier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caballero-Gaudes, César</au><au>Moia, Stefano</au><au>Panwar, Puja</au><au>Bandettini, Peter A.</au><au>Gonzalez-Castillo, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2019-11-15</date><risdate>2019</risdate><volume>202</volume><spage>116081</spage><epage>116081</epage><pages>116081-116081</pages><artnum>116081</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events. •A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31419613</pmid><doi>10.1016/j.neuroimage.2019.116081</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819276
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Adult
Algorithms
BOLD fMRI
Brain - physiology
Brain mapping
Brain Mapping - methods
Datasets
Deconvolution
Estimates
Female
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Male
Methods
Multi-echo
Multimedia
NMR
Nuclear magnetic resonance
Physiology
ROC Curve
Signal Processing, Computer-Assisted
Single-trial
Sparsity
Time series
Young Adult
title A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deconvolution%20algorithm%20for%20multi-echo%20functional%20MRI:%20Multi-echo%20Sparse%20Paradigm%20Free%20Mapping&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Caballero-Gaudes,%20C%C3%A9sar&rft.date=2019-11-15&rft.volume=202&rft.spage=116081&rft.epage=116081&rft.pages=116081-116081&rft.artnum=116081&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2019.116081&rft_dat=%3Cproquest_pubme%3E2307688850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307688850&rft_id=info:pmid/31419613&rft_els_id=S105381191930669X&rfr_iscdi=true