A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping

This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2019-11, Vol.202, p.116081-116081, Article 116081
Hauptverfasser: Caballero-Gaudes, César, Moia, Stefano, Panwar, Puja, Bandettini, Peter A., Gonzalez-Castillo, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events. •A deconvolution algorithm of the BOLD signal tailored for multiecho fMRI data.•It deconvolves changes in transverse relaxation (ΔR2⁎) with interpretable units.•It detects single-trial BOLD responses without prior knowledge of their timing.•Task-related ΔR2⁎-maps show larger resemblance to standard model-based analyses.•It can help decipher the brain’s dynamics in paradigms with unknown event timing.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2019.116081