MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria
To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2019-11, Vol.4 (11), p.1978-1989 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the adaptor protein MamJ, thereby assembling a magnetic dipole much like a compass needle. However, in
Magnetospirillum gryphiswaldense
, discontinuous chains are still formed in the absence of MamK. Moreover, these fragmented chains persist in a straight conformation indicating undiscovered structural determinants able to accommodate a bar magnet-like magnetoreceptor in a helical bacterium. Here, we identify MamY, a membrane-bound protein that generates a sophisticated mechanical scaffold for magnetosomes. MamY localizes linearly along the positive inner cell curvature (the geodetic cell axis), probably by self-interaction and curvature sensing. In a
mamY
deletion mutant, magnetosome chains detach from the geodetic axis and fail to accommodate a straight conformation coinciding with reduced cellular magnetic orientation. Codeletion of
mamKY
completely abolishes chain formation, whereas on synthetic tethering of magnetosomes to MamY, the chain configuration is regained, emphasizing the structural properties of the protein. Our results suggest MamY is membrane-anchored mechanical scaffold that is essential to align the motility axis of magnetotactic spirilla with their magnetic moment vector and to perfectly reconcile magnetoreception with swimming direction.
Magnetotactic bacteria must assemble magnetosomes into a linear chain that orients the cell along magnetic fields, yet how spiral bacteria with highly curved surfaces accomplish this is unclear. Here, MamY is shown to assemble into linear structures that serve as a scaffold for magnetosomes in magnetotactic spirilla. |
---|---|
ISSN: | 2058-5276 2058-5276 |
DOI: | 10.1038/s41564-019-0512-8 |