Genetic Polymorphisms of IFNG and IFNGR1 with Latent Tuberculosis Infection
Previous studies indicated that single-nucleotide polymorphisms (SNPs) of interferon gamma (IFNG) and IFNG receptor 1 (IFNGR1) may be involved in the pathogenesis of pulmonary tuberculosis (PTB) in different populations. In order to further explore the results in a Chinese Han population, this study...
Gespeichert in:
Veröffentlicht in: | Disease markers 2019, Vol.2019 (2019), p.1-7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies indicated that single-nucleotide polymorphisms (SNPs) of interferon gamma (IFNG) and IFNG receptor 1 (IFNGR1) may be involved in the pathogenesis of pulmonary tuberculosis (PTB) in different populations. In order to further explore the results in a Chinese Han population, this study was designed to investigate potential associations between the polymorphisms in IFNG and IFNGR1 and susceptibility to latent tuberculosis infection (LTBI) and/or PTB in a Chinese Han population. A total of 209 PTB, 173 LTBI, and 183 healthy control subjects (HCS) were enrolled in our study. Genotyping was conducted using an improved multiplex ligase detection reaction (iMLDR). We performed a logistic regression including sex and age as covariates to test the effect of alleles/genotypes on LTBI and/or TB. All six markers studied in IFNG and IFNGR1 conformed to the Hardy–Weinberg equilibrium (HWE). The IFNG rs1861494 was significantly associated with LTBI in recessive model, and the CC+CT genotype decreased risk of LTBI by 50% (P=0.046, OR=0.50, 95%CI: 0.25-0.99). The IFNGR1 rs2234711 was significantly associated with LTBI, and allele A increased the risk of LTBI by 55% (P=0.047, OR=1.55, 95%CI: 1.00-2.40). In the present study, we found that IFNG and IFNGR1 polymorphisms were associated with LTBI. |
---|---|
ISSN: | 0278-0240 1875-8630 |
DOI: | 10.1155/2019/8410290 |