An investigation of CNN models for differentiating malignant from benign lesions using small pathologically proven datasets

Highlights•Proposed two CNN models to classify small cancer image dataset (Malignance/Benign). •Combine raw images and LBP features can improve the classification on small data. •Proposed V-1D model can better study the small and unbalanced dataset. •Local information from lung nodule significantly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2019-10, Vol.77, p.101645-101645, Article 101645
Hauptverfasser: Zhang, Shu, Han, Fangfang, Liang, Zhengrong, Tan, Jiaxing, Cao, Weiguo, Gao, Yongfeng, Pomeroy, Marc, Ng, Kenneth, Hou, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights•Proposed two CNN models to classify small cancer image dataset (Malignance/Benign). •Combine raw images and LBP features can improve the classification on small data. •Proposed V-1D model can better study the small and unbalanced dataset. •Local information from lung nodule significantly improves the M/B classification.
ISSN:0895-6111
1879-0771
DOI:10.1016/j.compmedimag.2019.101645