An investigation of CNN models for differentiating malignant from benign lesions using small pathologically proven datasets
Highlights•Proposed two CNN models to classify small cancer image dataset (Malignance/Benign). •Combine raw images and LBP features can improve the classification on small data. •Proposed V-1D model can better study the small and unbalanced dataset. •Local information from lung nodule significantly...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 2019-10, Vol.77, p.101645-101645, Article 101645 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights•Proposed two CNN models to classify small cancer image dataset (Malignance/Benign). •Combine raw images and LBP features can improve the classification on small data. •Proposed V-1D model can better study the small and unbalanced dataset. •Local information from lung nodule significantly improves the M/B classification. |
---|---|
ISSN: | 0895-6111 1879-0771 |
DOI: | 10.1016/j.compmedimag.2019.101645 |